JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech I Year I Semester Examinations, March/April - 2023 MATHEMATICS - I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE)
Time: 3 Hours
Max. Marks: 75
Note: i) Question paper consists of Part A, Part B.
ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART - A

(25 Marks)
1.a) Define an exact differential equation. Write the solution of that exact differentialequation.
b) Write the general solution of $\left(D^{2}+a^{2}\right) y=$ sinax.
c) Define a Hermitian matrix and a skew-Hermitical matrix.
d) Define Echelon form of a matrix. What is the rank of a matrix which is in Echelon form.
e) Show that the sum of the eigen values is equal to its trace.
f) Define a quadratic form and give its real symmetric matrix.
g) If $z=e^{x y}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial x}$
h) If $x=r \cos \theta y=r \sin , \theta$, find $\frac{\partial(r, \theta)}{\partial(x, y)}$.
i) Form a partial diferential equation from $z=f\left(x^{2}+y^{2}\right)$ by the elimination of arbitrary function.
j) Solve $p x+q y=z$.

PART - B

(50 Marks)
2.a) Solve $(\cos x \tan y+\cos (x+y)) d x+\left(\sin x \sec ^{2} y+\cos (x+y)\right) d y=0$.
b) According to Newton's law of cooling, the rate at which a substance cools in moving air is proportional to the difference between the temperature of the substance and that of the air. If the temperature of the air is $30{ }^{\circ} \mathrm{C}$ and the substance cools from $100{ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, find when the temperature will be $40^{\circ} \mathrm{C}$?

OR

3. Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$ by method of variation of parameters.
4.a) Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$.
b) Solve the system of equation $3 x+3 y+2 z=1 ; x+2 y=4 ; 10 y+3 z=-2 ; 2 x-3 y-z=5$.

OR

5. Solve the system $\lambda x+y+z=0 ; x+\lambda y+z=0 ; x+y+\lambda z=0$ for all values of λ, if it has a non-trivial solution.
6. Verify Cayley-hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence find the value of $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$.

OR

7. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form and find its nature.
8.a) If $u=\log \left(\frac{x^{4}+y^{4}}{x+y}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$.
b) If $u=\sin ^{-1}(x-y), x=3,=4 t^{3}$, show that $\frac{d u}{d t}=\frac{3}{\sqrt{1-t^{2}}}$.
8. Find the volume the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}} \Theta \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
10.a) Form a partial differential equation from $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
b) $\operatorname{Solve}\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 z x$.

OR

11.a) For a partial differential equation from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
b) Solve $p^{2}-q^{2}=x-y$.

